This documentation is automatically generated by online-judge-tools/verification-helper
#include "semi_relaxed_conv.hpp"
#pragma once
#include "fft.hpp"
#include <algorithm>
#include <type_traits>
#include <utility>
#include <vector>
template<typename Tp, typename Closure>
inline std::enable_if_t<std::is_invocable_r_v<Tp, Closure, int, const std::vector<Tp> &>,
std::vector<Tp>>
semi_relaxed_convolution_naive(const std::vector<Tp> &A, Closure gen, int n) {
std::vector<Tp> B(n), AB(n);
for (int i = 0; i < n; ++i) {
for (int j = std::max(0, i - (int)A.size() + 1); j < i; ++j) AB[i] += A[i - j] * B[j];
B[i] = gen(i, AB);
if (!A.empty()) AB[i] += A[0] * B[i];
}
return B;
}
// returns coefficients generated by closure
// closure: gen(index, current_product)
template<typename Tp, typename Closure>
inline std::enable_if_t<std::is_invocable_r_v<Tp, Closure, int, const std::vector<Tp> &>,
std::vector<Tp>>
semi_relaxed_convolution(const std::vector<Tp> &A, Closure gen, int n) {
if (A.size() < 60) return semi_relaxed_convolution_naive(A, gen, n);
enum { BaseCaseSize = 32 };
static_assert((BaseCaseSize & (BaseCaseSize - 1)) == 0);
static const int Block[] = {16, 16, 16, 16, 16};
static const int BlockSize[] = {
BaseCaseSize,
BaseCaseSize * Block[0],
BaseCaseSize * Block[0] * Block[1],
BaseCaseSize * Block[0] * Block[1] * Block[2],
BaseCaseSize * Block[0] * Block[1] * Block[2] * Block[3],
BaseCaseSize * Block[0] * Block[1] * Block[2] * Block[3] * Block[4],
};
// returns (which_block, level)
auto blockinfo = [](int ind) {
int i = ind / BaseCaseSize, lv = 0;
while ((i & (Block[lv] - 1)) == 0) i /= Block[lv++];
return std::make_pair(i & (Block[lv] - 1), lv);
};
std::vector<Tp> B(n), AB(n);
std::vector<std::vector<std::vector<Tp>>> dftA, dftB;
for (int i = 0; i < n; ++i) {
const int s = i & (BaseCaseSize - 1);
// block contribution
if (i >= BaseCaseSize && s == 0) {
const auto [j, lv] = blockinfo(i);
const int blocksize = BlockSize[lv];
if (blocksize * j == i) {
if ((int)dftA.size() == lv) {
dftA.emplace_back();
dftB.emplace_back(Block[lv] - 1);
}
if ((j - 1) * blocksize < (int)A.size()) {
dftA[lv]
.emplace_back(A.begin() + (j - 1) * blocksize,
A.begin() + std::min<int>((j + 1) * blocksize, A.size()))
.resize(blocksize * 2);
fft(dftA[lv][j - 1]);
}
}
if (!dftA[lv].empty()) {
dftB[lv][j - 1].resize(blocksize * 2);
std::copy_n(B.begin() + (i - blocksize), blocksize, dftB[lv][j - 1].begin());
std::fill_n(dftB[lv][j - 1].begin() + blocksize, blocksize, Tp(0));
fft(dftB[lv][j - 1]);
// middle product
std::vector<Tp> mp(blocksize * 2);
for (int k = 0; k < std::min<int>(j, dftA[lv].size()); ++k)
for (int l = 0; l < blocksize * 2; ++l)
mp[l] += dftA[lv][k][l] * dftB[lv][j - 1 - k][l];
inv_fft(mp);
for (int k = 0; k < blocksize && i + k < n; ++k) AB[i + k] += mp[k + blocksize];
}
}
// basecase contribution
for (int j = std::max(i - s, i - (int)A.size() + 1); j < i; ++j) AB[i] += A[i - j] * B[j];
B[i] = gen(i, AB);
if (!A.empty()) AB[i] += A[0] * B[i];
}
return B;
}
#line 2 "semi_relaxed_conv.hpp"
#line 2 "fft.hpp"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <memory>
#include <vector>
template<typename Tp> class FftInfo {
static Tp least_quadratic_nonresidue() {
for (int i = 2;; ++i)
if (Tp(i).pow((Tp::mod() - 1) / 2) == -1) return Tp(i);
}
const int ordlog2_;
const Tp zeta_;
const Tp invzeta_;
const Tp imag_;
const Tp invimag_;
mutable std::vector<Tp> root_;
mutable std::vector<Tp> invroot_;
FftInfo()
: ordlog2_(__builtin_ctzll(Tp::mod() - 1)),
zeta_(least_quadratic_nonresidue().pow((Tp::mod() - 1) >> ordlog2_)),
invzeta_(zeta_.inv()), imag_(zeta_.pow(1LL << (ordlog2_ - 2))), invimag_(-imag_),
root_{Tp(1), imag_}, invroot_{Tp(1), invimag_} {}
public:
static const FftInfo &get() {
static FftInfo info;
return info;
}
Tp imag() const { return imag_; }
Tp inv_imag() const { return invimag_; }
Tp zeta() const { return zeta_; }
Tp inv_zeta() const { return invzeta_; }
const std::vector<Tp> &root(int n) const {
// [0, n)
assert((n & (n - 1)) == 0);
if (const int s = root_.size(); s < n) {
root_.resize(n);
for (int i = __builtin_ctz(s); (1 << i) < n; ++i) {
const int j = 1 << i;
root_[j] = zeta_.pow(1LL << (ordlog2_ - i - 2));
for (int k = j + 1; k < j * 2; ++k) root_[k] = root_[k - j] * root_[j];
}
}
return root_;
}
const std::vector<Tp> &inv_root(int n) const {
// [0, n)
assert((n & (n - 1)) == 0);
if (const int s = invroot_.size(); s < n) {
invroot_.resize(n);
for (int i = __builtin_ctz(s); (1 << i) < n; ++i) {
const int j = 1 << i;
invroot_[j] = invzeta_.pow(1LL << (ordlog2_ - i - 2));
for (int k = j + 1; k < j * 2; ++k) invroot_[k] = invroot_[k - j] * invroot_[j];
}
}
return invroot_;
}
};
inline int fft_len(int n) {
--n;
n |= n >> 1, n |= n >> 2, n |= n >> 4, n |= n >> 8;
return (n | n >> 16) + 1;
}
namespace detail {
template<typename Iterator> inline void
butterfly_n(Iterator a, int n,
const std::vector<typename std::iterator_traits<Iterator>::value_type> &root) {
assert(n > 0);
assert((n & (n - 1)) == 0);
const int bn = __builtin_ctz(n);
if (bn & 1) {
for (int i = 0; i < n / 2; ++i) {
const auto a0 = a[i], a1 = a[i + n / 2];
a[i] = a0 + a1, a[i + n / 2] = a0 - a1;
}
}
for (int i = n >> (bn & 1); i >= 4; i /= 4) {
const int i4 = i / 4;
for (int k = 0; k < i4; ++k) {
const auto a0 = a[k + i4 * 0], a1 = a[k + i4 * 1];
const auto a2 = a[k + i4 * 2], a3 = a[k + i4 * 3];
const auto a02p = a0 + a2, a02m = a0 - a2;
const auto a13p = a1 + a3, a13m = (a1 - a3) * root[1];
a[k + i4 * 0] = a02p + a13p, a[k + i4 * 1] = a02p - a13p;
a[k + i4 * 2] = a02m + a13m, a[k + i4 * 3] = a02m - a13m;
}
for (int j = i, m = 2; j < n; j += i, m += 2) {
const auto r = root[m], r2 = r * r, r3 = r2 * r;
for (int k = j; k < j + i4; ++k) {
const auto a0 = a[k + i4 * 0], a1 = a[k + i4 * 1] * r;
const auto a2 = a[k + i4 * 2] * r2, a3 = a[k + i4 * 3] * r3;
const auto a02p = a0 + a2, a02m = a0 - a2;
const auto a13p = a1 + a3, a13m = (a1 - a3) * root[1];
a[k + i4 * 0] = a02p + a13p, a[k + i4 * 1] = a02p - a13p;
a[k + i4 * 2] = a02m + a13m, a[k + i4 * 3] = a02m - a13m;
}
}
}
}
template<typename Iterator> inline void
inv_butterfly_n(Iterator a, int n,
const std::vector<typename std::iterator_traits<Iterator>::value_type> &root) {
assert(n > 0);
assert((n & (n - 1)) == 0);
const int bn = __builtin_ctz(n);
for (int i = 4; i <= (n >> (bn & 1)); i *= 4) {
const int i4 = i / 4;
for (int k = 0; k < i4; ++k) {
const auto a0 = a[k + i4 * 0], a1 = a[k + i4 * 1];
const auto a2 = a[k + i4 * 2], a3 = a[k + i4 * 3];
const auto a01p = a0 + a1, a01m = a0 - a1;
const auto a23p = a2 + a3, a23m = (a2 - a3) * root[1];
a[k + i4 * 0] = a01p + a23p, a[k + i4 * 1] = a01m + a23m;
a[k + i4 * 2] = a01p - a23p, a[k + i4 * 3] = a01m - a23m;
}
for (int j = i, m = 2; j < n; j += i, m += 2) {
const auto r = root[m], r2 = r * r, r3 = r2 * r;
for (int k = j; k < j + i4; ++k) {
const auto a0 = a[k + i4 * 0], a1 = a[k + i4 * 1];
const auto a2 = a[k + i4 * 2], a3 = a[k + i4 * 3];
const auto a01p = a0 + a1, a01m = a0 - a1;
const auto a23p = a2 + a3, a23m = (a2 - a3) * root[1];
a[k + i4 * 0] = a01p + a23p, a[k + i4 * 1] = (a01m + a23m) * r;
a[k + i4 * 2] = (a01p - a23p) * r2, a[k + i4 * 3] = (a01m - a23m) * r3;
}
}
}
if (bn & 1) {
for (int i = 0; i < n / 2; ++i) {
const auto a0 = a[i], a1 = a[i + n / 2];
a[i] = a0 + a1, a[i + n / 2] = a0 - a1;
}
}
}
} // namespace detail
// FFT_n: A(x) |-> bit-reversed order of [A(1), A(zeta_n), ..., A(zeta_n^(n-1))]
template<typename Iterator> inline void fft_n(Iterator a, int n) {
using Tp = typename std::iterator_traits<Iterator>::value_type;
detail::butterfly_n(a, n, FftInfo<Tp>::get().root(n / 2));
}
template<typename Tp> inline void fft(std::vector<Tp> &a) { fft_n(a.begin(), a.size()); }
// IFFT_n: bit-reversed order of [A(1), A(zeta_n), ..., A(zeta_n^(n-1))] |-> A(x)
template<typename Iterator> inline void inv_fft_n(Iterator a, int n) {
using Tp = typename std::iterator_traits<Iterator>::value_type;
detail::inv_butterfly_n(a, n, FftInfo<Tp>::get().inv_root(n / 2));
const Tp iv = Tp::mod() - (Tp::mod() - 1) / n;
for (int i = 0; i < n; ++i) a[i] *= iv;
}
template<typename Tp> inline void inv_fft(std::vector<Tp> &a) { inv_fft_n(a.begin(), a.size()); }
// IFFT_n^T: A(x) |-> 1/n FFT_n((x^n A(x^(-1))) mod (x^n - 1))
template<typename Iterator> inline void transposed_inv_fft_n(Iterator a, int n) {
using Tp = typename std::iterator_traits<Iterator>::value_type;
const Tp iv = Tp::mod() - (Tp::mod() - 1) / n;
for (int i = 0; i < n; ++i) a[i] *= iv;
detail::butterfly_n(a, n, FftInfo<Tp>::get().inv_root(n / 2));
}
template<typename Tp> inline void transposed_inv_fft(std::vector<Tp> &a) {
transposed_inv_fft_n(a.begin(), a.size());
}
// FFT_n^T : FFT_n((x^n A(x^(-1))) mod (x^n - 1)) |-> n A(x)
template<typename Iterator> inline void transposed_fft_n(Iterator a, int n) {
using Tp = typename std::iterator_traits<Iterator>::value_type;
detail::inv_butterfly_n(a, n, FftInfo<Tp>::get().root(n / 2));
}
template<typename Tp> inline void transposed_fft(std::vector<Tp> &a) {
transposed_fft_n(a.begin(), a.size());
}
template<typename Tp> inline std::vector<Tp> convolution_fft(std::vector<Tp> a, std::vector<Tp> b) {
if (a.empty() || b.empty()) return {};
const int n = a.size();
const int m = b.size();
const int len = fft_len(n + m - 1);
a.resize(len);
b.resize(len);
fft(a);
fft(b);
for (int i = 0; i < len; ++i) a[i] *= b[i];
inv_fft(a);
a.resize(n + m - 1);
return a;
}
template<typename Tp> inline std::vector<Tp> square_fft(std::vector<Tp> a) {
if (a.empty()) return {};
const int n = a.size();
const int len = fft_len(n * 2 - 1);
a.resize(len);
fft(a);
for (int i = 0; i < len; ++i) a[i] *= a[i];
inv_fft(a);
a.resize(n * 2 - 1);
return a;
}
template<typename Tp>
inline std::vector<Tp> convolution_naive(const std::vector<Tp> &a, const std::vector<Tp> &b) {
if (a.empty() || b.empty()) return {};
const int n = a.size();
const int m = b.size();
std::vector<Tp> res(n + m - 1);
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j) res[i + j] += a[i] * b[j];
return res;
}
template<typename Tp>
inline std::vector<Tp> convolution(const std::vector<Tp> &a, const std::vector<Tp> &b) {
if (std::min(a.size(), b.size()) < 60) return convolution_naive(a, b);
if (std::addressof(a) == std::addressof(b)) return square_fft(a);
return convolution_fft(a, b);
}
#line 5 "semi_relaxed_conv.hpp"
#include <type_traits>
#include <utility>
#line 8 "semi_relaxed_conv.hpp"
template<typename Tp, typename Closure>
inline std::enable_if_t<std::is_invocable_r_v<Tp, Closure, int, const std::vector<Tp> &>,
std::vector<Tp>>
semi_relaxed_convolution_naive(const std::vector<Tp> &A, Closure gen, int n) {
std::vector<Tp> B(n), AB(n);
for (int i = 0; i < n; ++i) {
for (int j = std::max(0, i - (int)A.size() + 1); j < i; ++j) AB[i] += A[i - j] * B[j];
B[i] = gen(i, AB);
if (!A.empty()) AB[i] += A[0] * B[i];
}
return B;
}
// returns coefficients generated by closure
// closure: gen(index, current_product)
template<typename Tp, typename Closure>
inline std::enable_if_t<std::is_invocable_r_v<Tp, Closure, int, const std::vector<Tp> &>,
std::vector<Tp>>
semi_relaxed_convolution(const std::vector<Tp> &A, Closure gen, int n) {
if (A.size() < 60) return semi_relaxed_convolution_naive(A, gen, n);
enum { BaseCaseSize = 32 };
static_assert((BaseCaseSize & (BaseCaseSize - 1)) == 0);
static const int Block[] = {16, 16, 16, 16, 16};
static const int BlockSize[] = {
BaseCaseSize,
BaseCaseSize * Block[0],
BaseCaseSize * Block[0] * Block[1],
BaseCaseSize * Block[0] * Block[1] * Block[2],
BaseCaseSize * Block[0] * Block[1] * Block[2] * Block[3],
BaseCaseSize * Block[0] * Block[1] * Block[2] * Block[3] * Block[4],
};
// returns (which_block, level)
auto blockinfo = [](int ind) {
int i = ind / BaseCaseSize, lv = 0;
while ((i & (Block[lv] - 1)) == 0) i /= Block[lv++];
return std::make_pair(i & (Block[lv] - 1), lv);
};
std::vector<Tp> B(n), AB(n);
std::vector<std::vector<std::vector<Tp>>> dftA, dftB;
for (int i = 0; i < n; ++i) {
const int s = i & (BaseCaseSize - 1);
// block contribution
if (i >= BaseCaseSize && s == 0) {
const auto [j, lv] = blockinfo(i);
const int blocksize = BlockSize[lv];
if (blocksize * j == i) {
if ((int)dftA.size() == lv) {
dftA.emplace_back();
dftB.emplace_back(Block[lv] - 1);
}
if ((j - 1) * blocksize < (int)A.size()) {
dftA[lv]
.emplace_back(A.begin() + (j - 1) * blocksize,
A.begin() + std::min<int>((j + 1) * blocksize, A.size()))
.resize(blocksize * 2);
fft(dftA[lv][j - 1]);
}
}
if (!dftA[lv].empty()) {
dftB[lv][j - 1].resize(blocksize * 2);
std::copy_n(B.begin() + (i - blocksize), blocksize, dftB[lv][j - 1].begin());
std::fill_n(dftB[lv][j - 1].begin() + blocksize, blocksize, Tp(0));
fft(dftB[lv][j - 1]);
// middle product
std::vector<Tp> mp(blocksize * 2);
for (int k = 0; k < std::min<int>(j, dftA[lv].size()); ++k)
for (int l = 0; l < blocksize * 2; ++l)
mp[l] += dftA[lv][k][l] * dftB[lv][j - 1 - k][l];
inv_fft(mp);
for (int k = 0; k < blocksize && i + k < n; ++k) AB[i + k] += mp[k + blocksize];
}
}
// basecase contribution
for (int j = std::max(i - s, i - (int)A.size() + 1); j < i; ++j) AB[i] += A[i - j] * B[j];
B[i] = gen(i, AB);
if (!A.empty()) AB[i] += A[0] * B[i];
}
return B;
}