This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/polynomial_taylor_shift"
#include "binomial.hpp"
#include "fps_as_operator.hpp"
#include "modint.hpp"
#include <iostream>
#include <vector>
template<typename Tp>
std::vector<Tp> taylor_shift_via_linear_operator(const std::vector<Tp> &a, Tp c) {
const int n = a.size();
auto &&bin = Binomial<Tp>::get(n);
std::vector<Tp> f(n);
Tp cc = 1;
for (int i = 0; i < n; ++i) f[i] = cc * bin.inv_factorial(i), cc *= c;
return apply_fps(f, a);
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
using mint = ModInt<998244353>;
int n;
mint c;
std::cin >> n >> c;
std::vector<mint> a(n);
for (int i = 0; i < n; ++i) std::cin >> a[i];
const auto res = taylor_shift_via_linear_operator(a, c);
for (int i = 0; i < n; ++i) std::cout << res[i] << ' ';
return 0;
}
#line 1 "test/formal_power_series/polynomial_taylor_shift.1.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/polynomial_taylor_shift"
#line 2 "binomial.hpp"
#include <algorithm>
#include <vector>
template<typename Tp> class Binomial {
std::vector<Tp> factorial_, invfactorial_;
Binomial() : factorial_{Tp(1)}, invfactorial_{Tp(1)} {}
void preprocess(int n) {
if (const int nn = factorial_.size(); nn < n) {
int k = nn;
while (k < n) k *= 2;
k = std::min<long long>(k, Tp::mod());
factorial_.resize(k);
invfactorial_.resize(k);
for (int i = nn; i < k; ++i) factorial_[i] = factorial_[i - 1] * i;
invfactorial_.back() = factorial_.back().inv();
for (int i = k - 2; i >= nn; --i) invfactorial_[i] = invfactorial_[i + 1] * (i + 1);
}
}
public:
static const Binomial &get(int n) {
static Binomial bin;
bin.preprocess(n);
return bin;
}
Tp binom(int n, int m) const {
return n < m ? Tp() : factorial_[n] * invfactorial_[m] * invfactorial_[n - m];
}
Tp inv(int n) const { return factorial_[n - 1] * invfactorial_[n]; }
Tp factorial(int n) const { return factorial_[n]; }
Tp inv_factorial(int n) const { return invfactorial_[n]; }
};
#line 2 "fps_as_operator.hpp"
#line 2 "fft.hpp"
#line 4 "fft.hpp"
#include <cassert>
#include <iterator>
#include <memory>
#line 8 "fft.hpp"
template<typename Tp> class FftInfo {
static Tp least_quadratic_nonresidue() {
for (int i = 2;; ++i)
if (Tp(i).pow((Tp::mod() - 1) / 2) == -1) return Tp(i);
}
const int ordlog2_;
const Tp zeta_;
const Tp invzeta_;
const Tp imag_;
const Tp invimag_;
mutable std::vector<Tp> root_;
mutable std::vector<Tp> invroot_;
FftInfo()
: ordlog2_(__builtin_ctzll(Tp::mod() - 1)),
zeta_(least_quadratic_nonresidue().pow((Tp::mod() - 1) >> ordlog2_)),
invzeta_(zeta_.inv()), imag_(zeta_.pow(1LL << (ordlog2_ - 2))), invimag_(-imag_),
root_{Tp(1), imag_}, invroot_{Tp(1), invimag_} {}
public:
static const FftInfo &get() {
static FftInfo info;
return info;
}
Tp imag() const { return imag_; }
Tp inv_imag() const { return invimag_; }
Tp zeta() const { return zeta_; }
Tp inv_zeta() const { return invzeta_; }
const std::vector<Tp> &root(int n) const {
// [0, n)
assert((n & (n - 1)) == 0);
if (const int s = root_.size(); s < n) {
root_.resize(n);
for (int i = __builtin_ctz(s); (1 << i) < n; ++i) {
const int j = 1 << i;
root_[j] = zeta_.pow(1LL << (ordlog2_ - i - 2));
for (int k = j + 1; k < j * 2; ++k) root_[k] = root_[k - j] * root_[j];
}
}
return root_;
}
const std::vector<Tp> &inv_root(int n) const {
// [0, n)
assert((n & (n - 1)) == 0);
if (const int s = invroot_.size(); s < n) {
invroot_.resize(n);
for (int i = __builtin_ctz(s); (1 << i) < n; ++i) {
const int j = 1 << i;
invroot_[j] = invzeta_.pow(1LL << (ordlog2_ - i - 2));
for (int k = j + 1; k < j * 2; ++k) invroot_[k] = invroot_[k - j] * invroot_[j];
}
}
return invroot_;
}
};
inline int fft_len(int n) {
--n;
n |= n >> 1, n |= n >> 2, n |= n >> 4, n |= n >> 8;
return (n | n >> 16) + 1;
}
namespace detail {
template<typename Iterator> inline void
butterfly_n(Iterator a, int n,
const std::vector<typename std::iterator_traits<Iterator>::value_type> &root) {
assert(n > 0);
assert((n & (n - 1)) == 0);
const int bn = __builtin_ctz(n);
if (bn & 1) {
for (int i = 0; i < n / 2; ++i) {
const auto a0 = a[i], a1 = a[i + n / 2];
a[i] = a0 + a1, a[i + n / 2] = a0 - a1;
}
}
for (int i = n >> (bn & 1); i >= 4; i /= 4) {
const int i4 = i / 4;
for (int k = 0; k < i4; ++k) {
const auto a0 = a[k + i4 * 0], a1 = a[k + i4 * 1];
const auto a2 = a[k + i4 * 2], a3 = a[k + i4 * 3];
const auto a02p = a0 + a2, a02m = a0 - a2;
const auto a13p = a1 + a3, a13m = (a1 - a3) * root[1];
a[k + i4 * 0] = a02p + a13p, a[k + i4 * 1] = a02p - a13p;
a[k + i4 * 2] = a02m + a13m, a[k + i4 * 3] = a02m - a13m;
}
for (int j = i, m = 2; j < n; j += i, m += 2) {
const auto r = root[m], r2 = r * r, r3 = r2 * r;
for (int k = j; k < j + i4; ++k) {
const auto a0 = a[k + i4 * 0], a1 = a[k + i4 * 1] * r;
const auto a2 = a[k + i4 * 2] * r2, a3 = a[k + i4 * 3] * r3;
const auto a02p = a0 + a2, a02m = a0 - a2;
const auto a13p = a1 + a3, a13m = (a1 - a3) * root[1];
a[k + i4 * 0] = a02p + a13p, a[k + i4 * 1] = a02p - a13p;
a[k + i4 * 2] = a02m + a13m, a[k + i4 * 3] = a02m - a13m;
}
}
}
}
template<typename Iterator> inline void
inv_butterfly_n(Iterator a, int n,
const std::vector<typename std::iterator_traits<Iterator>::value_type> &root) {
assert(n > 0);
assert((n & (n - 1)) == 0);
const int bn = __builtin_ctz(n);
for (int i = 4; i <= (n >> (bn & 1)); i *= 4) {
const int i4 = i / 4;
for (int k = 0; k < i4; ++k) {
const auto a0 = a[k + i4 * 0], a1 = a[k + i4 * 1];
const auto a2 = a[k + i4 * 2], a3 = a[k + i4 * 3];
const auto a01p = a0 + a1, a01m = a0 - a1;
const auto a23p = a2 + a3, a23m = (a2 - a3) * root[1];
a[k + i4 * 0] = a01p + a23p, a[k + i4 * 1] = a01m + a23m;
a[k + i4 * 2] = a01p - a23p, a[k + i4 * 3] = a01m - a23m;
}
for (int j = i, m = 2; j < n; j += i, m += 2) {
const auto r = root[m], r2 = r * r, r3 = r2 * r;
for (int k = j; k < j + i4; ++k) {
const auto a0 = a[k + i4 * 0], a1 = a[k + i4 * 1];
const auto a2 = a[k + i4 * 2], a3 = a[k + i4 * 3];
const auto a01p = a0 + a1, a01m = a0 - a1;
const auto a23p = a2 + a3, a23m = (a2 - a3) * root[1];
a[k + i4 * 0] = a01p + a23p, a[k + i4 * 1] = (a01m + a23m) * r;
a[k + i4 * 2] = (a01p - a23p) * r2, a[k + i4 * 3] = (a01m - a23m) * r3;
}
}
}
if (bn & 1) {
for (int i = 0; i < n / 2; ++i) {
const auto a0 = a[i], a1 = a[i + n / 2];
a[i] = a0 + a1, a[i + n / 2] = a0 - a1;
}
}
}
} // namespace detail
// FFT_n: A(x) |-> bit-reversed order of [A(1), A(zeta_n), ..., A(zeta_n^(n-1))]
template<typename Iterator> inline void fft_n(Iterator a, int n) {
using Tp = typename std::iterator_traits<Iterator>::value_type;
detail::butterfly_n(a, n, FftInfo<Tp>::get().root(n / 2));
}
template<typename Tp> inline void fft(std::vector<Tp> &a) { fft_n(a.begin(), a.size()); }
// IFFT_n: bit-reversed order of [A(1), A(zeta_n), ..., A(zeta_n^(n-1))] |-> A(x)
template<typename Iterator> inline void inv_fft_n(Iterator a, int n) {
using Tp = typename std::iterator_traits<Iterator>::value_type;
detail::inv_butterfly_n(a, n, FftInfo<Tp>::get().inv_root(n / 2));
const Tp iv = Tp::mod() - (Tp::mod() - 1) / n;
for (int i = 0; i < n; ++i) a[i] *= iv;
}
template<typename Tp> inline void inv_fft(std::vector<Tp> &a) { inv_fft_n(a.begin(), a.size()); }
// IFFT_n^T: A(x) |-> 1/n FFT_n((x^n A(x^(-1))) mod (x^n - 1))
template<typename Iterator> inline void transposed_inv_fft_n(Iterator a, int n) {
using Tp = typename std::iterator_traits<Iterator>::value_type;
const Tp iv = Tp::mod() - (Tp::mod() - 1) / n;
for (int i = 0; i < n; ++i) a[i] *= iv;
detail::butterfly_n(a, n, FftInfo<Tp>::get().inv_root(n / 2));
}
template<typename Tp> inline void transposed_inv_fft(std::vector<Tp> &a) {
transposed_inv_fft_n(a.begin(), a.size());
}
// FFT_n^T : FFT_n((x^n A(x^(-1))) mod (x^n - 1)) |-> n A(x)
template<typename Iterator> inline void transposed_fft_n(Iterator a, int n) {
using Tp = typename std::iterator_traits<Iterator>::value_type;
detail::inv_butterfly_n(a, n, FftInfo<Tp>::get().root(n / 2));
}
template<typename Tp> inline void transposed_fft(std::vector<Tp> &a) {
transposed_fft_n(a.begin(), a.size());
}
template<typename Tp> inline std::vector<Tp> convolution_fft(std::vector<Tp> a, std::vector<Tp> b) {
if (a.empty() || b.empty()) return {};
const int n = a.size();
const int m = b.size();
const int len = fft_len(n + m - 1);
a.resize(len);
b.resize(len);
fft(a);
fft(b);
for (int i = 0; i < len; ++i) a[i] *= b[i];
inv_fft(a);
a.resize(n + m - 1);
return a;
}
template<typename Tp> inline std::vector<Tp> square_fft(std::vector<Tp> a) {
if (a.empty()) return {};
const int n = a.size();
const int len = fft_len(n * 2 - 1);
a.resize(len);
fft(a);
for (int i = 0; i < len; ++i) a[i] *= a[i];
inv_fft(a);
a.resize(n * 2 - 1);
return a;
}
template<typename Tp>
inline std::vector<Tp> convolution_naive(const std::vector<Tp> &a, const std::vector<Tp> &b) {
if (a.empty() || b.empty()) return {};
const int n = a.size();
const int m = b.size();
std::vector<Tp> res(n + m - 1);
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j) res[i + j] += a[i] * b[j];
return res;
}
template<typename Tp>
inline std::vector<Tp> convolution(const std::vector<Tp> &a, const std::vector<Tp> &b) {
if (std::min(a.size(), b.size()) < 60) return convolution_naive(a, b);
if (std::addressof(a) == std::addressof(b)) return square_fft(a);
return convolution_fft(a, b);
}
#line 7 "fps_as_operator.hpp"
// apply FPS as linear operator
// F(t): FPS in t where t = d/dx
// p(x): polynomial in x
template<typename Tp> inline std::vector<Tp> apply_egf(std::vector<Tp> F, std::vector<Tp> p) {
// kinda transposed algorithm of binomial convolution.
const int n = p.size();
auto &&bin = Binomial<Tp>::get(n);
F.resize(n);
for (int i = 0; i < n; ++i) {
F[i] *= bin.inv_factorial(i);
p[i] *= bin.factorial(i);
}
std::reverse(p.begin(), p.end());
auto res = convolution(F, p);
res.resize(n);
std::reverse(res.begin(), res.end());
for (int i = 0; i < n; ++i) res[i] *= bin.inv_factorial(i);
return res;
}
template<typename Tp>
inline std::vector<Tp> apply_fps(std::vector<Tp> F, const std::vector<Tp> &p) {
const int n = p.size();
auto &&bin = Binomial<Tp>::get(n);
F.resize(n);
for (int i = 0; i < n; ++i) F[i] *= bin.factorial(i);
return apply_egf(F, p);
}
#line 2 "modint.hpp"
#include <iostream>
#include <type_traits>
// clang-format off
template<unsigned Mod> class ModInt {
static_assert((Mod >> 31) == 0, "`Mod` must less than 2^(31)");
template<typename Int>
static std::enable_if_t<std::is_integral_v<Int>, unsigned> safe_mod(Int v) { using D = std::common_type_t<Int, unsigned>; return (v %= (int)Mod) < 0 ? (D)(v + (int)Mod) : (D)v; }
struct PrivateConstructor {} static inline private_constructor{};
ModInt(PrivateConstructor, unsigned v) : v_(v) {}
unsigned v_;
public:
static unsigned mod() { return Mod; }
static ModInt from_raw(unsigned v) { return ModInt(private_constructor, v); }
static ModInt zero() { return from_raw(0); }
static ModInt one() { return from_raw(1); }
bool is_zero() const { return v_ == 0; }
bool is_one() const { return v_ == 1; }
ModInt() : v_() {}
template<typename Int, typename std::enable_if_t<std::is_signed_v<Int>, int> = 0> ModInt(Int v) : v_(safe_mod(v)) {}
template<typename Int, typename std::enable_if_t<std::is_unsigned_v<Int>, int> = 0> ModInt(Int v) : v_(v % Mod) {}
unsigned val() const { return v_; }
ModInt operator-() const { return from_raw(v_ == 0 ? v_ : Mod - v_); }
ModInt pow(long long e) const { if (e < 0) return inv().pow(-e); for (ModInt x(*this), res(from_raw(1));; x *= x) { if (e & 1) res *= x; if ((e >>= 1) == 0) return res; }}
ModInt inv() const { int x1 = 1, x3 = 0, a = val(), b = Mod; while (b) { const int q = a / b, x1_old = x1, a_old = a; x1 = x3, x3 = x1_old - x3 * q, a = b, b = a_old - b * q; } return from_raw(x1 < 0 ? x1 + (int)Mod : x1); }
template<bool Odd = (Mod & 1)> std::enable_if_t<Odd, ModInt> div_by_2() const { if (v_ & 1) return from_raw((v_ + Mod) >> 1); return from_raw(v_ >> 1); }
ModInt &operator+=(const ModInt &a) { if ((v_ += a.v_) >= Mod) v_ -= Mod; return *this; }
ModInt &operator-=(const ModInt &a) { if ((v_ += Mod - a.v_) >= Mod) v_ -= Mod; return *this; }
ModInt &operator*=(const ModInt &a) { v_ = (unsigned long long)v_ * a.v_ % Mod; return *this; }
ModInt &operator/=(const ModInt &a) { return *this *= a.inv(); }
ModInt &operator++() { return *this += one(); }
ModInt operator++(int) { ModInt o(*this); *this += one(); return o; }
ModInt &operator--() { return *this -= one(); }
ModInt operator--(int) { ModInt o(*this); *this -= one(); return o; }
friend ModInt operator+(const ModInt &a, const ModInt &b) { return ModInt(a) += b; }
friend ModInt operator-(const ModInt &a, const ModInt &b) { return ModInt(a) -= b; }
friend ModInt operator*(const ModInt &a, const ModInt &b) { return ModInt(a) *= b; }
friend ModInt operator/(const ModInt &a, const ModInt &b) { return ModInt(a) /= b; }
friend bool operator==(const ModInt &a, const ModInt &b) { return a.v_ == b.v_; }
friend bool operator!=(const ModInt &a, const ModInt &b) { return a.v_ != b.v_; }
friend std::istream &operator>>(std::istream &a, ModInt &b) { int v; a >> v; b.v_ = safe_mod(v); return a; }
friend std::ostream &operator<<(std::ostream &a, const ModInt &b) { return a << b.val(); }
};
// clang-format on
#line 8 "test/formal_power_series/polynomial_taylor_shift.1.test.cpp"
template<typename Tp>
std::vector<Tp> taylor_shift_via_linear_operator(const std::vector<Tp> &a, Tp c) {
const int n = a.size();
auto &&bin = Binomial<Tp>::get(n);
std::vector<Tp> f(n);
Tp cc = 1;
for (int i = 0; i < n; ++i) f[i] = cc * bin.inv_factorial(i), cc *= c;
return apply_fps(f, a);
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
using mint = ModInt<998244353>;
int n;
mint c;
std::cin >> n >> c;
std::vector<mint> a(n);
for (int i = 0; i < n; ++i) std::cin >> a[i];
const auto res = taylor_shift_via_linear_operator(a, c);
for (int i = 0; i < n; ++i) std::cout << res[i] << ' ';
return 0;
}